Self-assembly of flowerlike AlOOH boehmite 3D nanoarchitectures

J Phys Chem B. 2006 Jul 27;110(29):14249-52. doi: 10.1021/jp062105f.

Abstract

In this work, a hydrothermal route using an ethanol-water solution to progressively synthesize a sequence of flowerlike three-dimensional gamma-AlOOH boehmite nanostructures without employing templates or matrixes for self-assembly is presented. The flowerlike boehmite nanoarchitectures exhibit three hierarchies of self-organization, i.e., single-crystalline nanorods, nanostrips, and bundles, which are characterized by scanning and transmission electron microscopy. The sequence of products obtained after different processing times indicates a self-assembly mechanism. The hydrogen bonding on the surface of nanorods or nanostrips possibly plays a key role, as identified by FTIR spectra of the products after they had been heated to 1000 degrees C. The specific surface area and pore-size distribution of the obtained product as determined by gas-sorption measurements show that the boehmite nanoarchitectures exhibit high BET surface area and porosity properties.