Effect of surfactants on inertial cavitation activity in a pulsed acoustic field

J Phys Chem B. 2005 Sep 8;109(35):16860-5. doi: 10.1021/jp0533271.

Abstract

It has previously been reported that the addition of low concentrations of ionic surfactants enhances the steady-state sonoluminescence (SL) intensity relative to water (Ashokkumar; et al. J. Phys. Chem. B 1997, 101, 10845). In the current study, both sonoluminescence and passive cavitation detection (PCD) were used to examine the acoustic cavitation field generated at different acoustic pulse lengths in the presence of an anionic surfactant, sodium dodecyl sulfate (SDS). A decrease in the SL intensity was observed in the presence of low concentrations of SDS and short acoustic pulse lengths. Under these conditions, the inhibition of bubble coalescence by SDS leads to a population of smaller bubbles, which dissolve during the pulse "off time". As the concentration of surfactant was increased at this pulse length, an increase in the acoustic cavitation activity was observed. This increase is partly attributed to enhanced growth rate of the bubbles by rectified diffusion. Conversely, at long pulse lengths acoustic cavitation activity was enhanced at low SDS concentrations as a larger number of the smaller bubbles could survive the pulse "off time". The effect of reduced acoustic shielding and an increase in the "active" bubble population due to electrostatic repulsion between bubbles are also significant in this case. Finally, as the surfactant concentration was increased further, the effect of electrostatic induced impedance shielding or reclustering dominates, resulting in a decrease in the SL intensity.