Structural investigation of Pd(II) in concentrated nitric and perchloric acid solutions by XAFS

J Phys Chem B. 2005 Jun 2;109(21):11074-82. doi: 10.1021/jp045489n.

Abstract

XAFS spectra of palladium(II) in concentrated HNO3/HClO4 acid mixtures have been recorded and analyzed. Structural parameters of the Pd(H2O)4(2+) complex and the mixed nitric Pd(NO3)2(H2O)2 complex, for the first time, were determined by the XAFS method. For pure 5 M HClO4 and for mixtures (0-0.3 M HNO3), the XAFS spectra of the 0.02 M Pd solutions are indeed very similar and originated from four Pd-O(w) equivalent distances. For the Pd(H2O)4(2+) square-planar aqua ion in strong perchloric acid, the use of an FEFF6 theoretical approach led to a first-shell Pd-O(w) distance of 2.00 (1) A and a Debye-Waller (DW) factor of sigma2 = 0.0030 (3) A2. Four water molecules are tightly bound to the Pd2+ ion in the equatorial plane, while two (or one) axial water molecules are weakly bound to the metal ion at 2.5 A with a DW factor of 0.015 (5) A2. For highly concentrated mixtures (4-6 M HNO3) and for pure concentrated (4-6 M) nitric acid as well as for crystalline powder Pd(NO3)2(H2O)2, the XAFS spectra are very similar and are determined by the mixed nitric complex Pd(NO3)2(H2O)2: four Pd-O near-equivalent distances of 2.01 (1) A from two H2O and two NO3 molecules with a total DW factor of sigma2 = 0.0037 (3) A2. Moreover, two Pd---N distances of 2.8-2.9 A were determined in the second coordination shell. Finally, for intermediate mixtures (1-3 M HNO3 in 5 M HClO4), the XAFS spectra are a superposition of the XAFS of Pd(H2O)4(2+) and Pd(NO3)2(H2O)2 complexes. The mean ligand number NO3(-) around Pd2+ has been calculated, and the XAFS results at pH close to zero confirm the spectrophotometric results previously published.