Treatment of chronic myeloid leukemia with imatinib mesylate

Int J Clin Oncol. 2006 Jun;11(3):176-83. doi: 10.1007/s10147-006-0582-5.

Abstract

Philadelphia (Ph) chromosome is the cytogenetic hallmark of chronic myeloid leukemia (CML). The translocation forms a chimeric gene, bcr-abl, which generates BCR-ABL. This fusion protein constitutively activate ABL tyrosine kinase and causes CML. Imatinib mesylate is a selective tyrosine kinase inhibitor on ABL, c-Kit and PGDF-receptor, and functions through competitive inhibition at the ATP-binding site of the enzyme, which leads to growth arrest or apoptosis in cells that express BCR-ABL. Imatinib has revolutionized the management of patients with CML, and at a dose of 400 mg daily has become the current standard therapy for newly diagnosed patients with CML even when they have HLA-matched family donors. Although imatinib therapy has only a 5-year history, it is hoped that CML will be cured with this drug and with forthcoming second-generation tyrosine kinase inhibitors as well as by allogeneic stem cell transplantation in patients who have become resistant to these drugs.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Benzamides
  • Combined Modality Therapy
  • Drug Resistance
  • Fusion Proteins, bcr-abl / drug effects
  • Humans
  • Imatinib Mesylate
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / drug therapy*
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / therapy
  • Piperazines / pharmacology
  • Piperazines / therapeutic use*
  • Protein Kinase Inhibitors / pharmacology
  • Protein Kinase Inhibitors / therapeutic use*
  • Pyrimidines / pharmacology
  • Pyrimidines / therapeutic use*
  • Stem Cell Transplantation
  • Transplantation, Homologous

Substances

  • Benzamides
  • Piperazines
  • Protein Kinase Inhibitors
  • Pyrimidines
  • Imatinib Mesylate
  • Fusion Proteins, bcr-abl