Effect of MPEP treatment on brain-derived neurotrophic factor gene expression

Pharmacol Rep. 2006 May-Jun;58(3):427-30.

Abstract

Treatment with most antidepressants induces expression of the gene coding for brain-derived neurotrophic factor (BDNF) in the hippocampus (and cerebral cortex). Recent data indicate antidepressant-like activity of group I mGlu receptor (mGluR1 and mGluR5) antagonists in animal tests/models. We now report that chronic treatment with 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a selective mGlu5 receptor antagonist, increased hippocampal but reduced cortical BDNF mRNA level (Northern blot). Desipramine, a classic antidepressant, increased BDNF mRNA level in both examined brain regions. This is the first demonstration that an antagonist of mGlu5 receptors, like a majority of well-established antidepressants, induces hippocampal BDNF gene expression. A significance of MPEP ability to reduce cortical BDNF needs further study. Nevertheless, this observation further indicates a potential antidepressant activity of the group I mGlu receptor antagonists in human depression.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain-Derived Neurotrophic Factor / biosynthesis*
  • Cerebral Cortex / drug effects
  • Desipramine / pharmacology
  • Gene Expression / drug effects
  • Hippocampus / drug effects
  • Male
  • Pyridines / pharmacology*
  • Rats
  • Rats, Wistar
  • Receptor, Metabotropic Glutamate 5
  • Receptors, Metabotropic Glutamate / antagonists & inhibitors

Substances

  • Brain-Derived Neurotrophic Factor
  • GRM5 protein, human
  • Grm5 protein, rat
  • Pyridines
  • Receptor, Metabotropic Glutamate 5
  • Receptors, Metabotropic Glutamate
  • 6-methyl-2-(phenylethynyl)pyridine
  • Desipramine