Influence of monolayer amounts of HNO3 on the evaporation rate of H2O over ice in the range 179 to 208 K: a quartz crystal microbalance study

J Phys Chem A. 2005 Aug 18;109(32):7151-65. doi: 10.1021/jp0505072.

Abstract

The evaporation flux J(ev) of H2O from thin H2O ice films containing between 0.5 and 7 monolayers of HNO3 has been measured in the range 179 to 208 K under both molecular and stirred flow conditions in isothermal experiments. FTIR absorption of the HNO3/H2O condensate revealed the formation of metastable alpha-NAT (HNO(3).3H2O) converting to stable beta-NAT at 205 K. After deposition of HNO3 for 16-80 s on a 1 mum thick pure ice film at a deposition rate in the range (6-60) x 10(12) molecules s(-1) the initial evaporative flux J(ev)(H2O) was always that of pure ice. J(ev)(H2O) gradually decreased with the evaporation of H2O and the concomitant increase of the average mole fraction of HNO3, chi(HNO3), indicating the presence of an amorphous mixture of H2O/HNO3 that is called complexed or (c)-ice whose vapor pressure is that of pure ice. The final value of J(ev) was smaller by factors varying from 2.7 to 65 relative to pure ice. Depending on the doping conditions and temperature of the ice film the pure ice thickness d(D) of the ice film for which J(ev) < 0.85J(ev)(pure ice) varied between 130 and 700 nm compared to the 1000 nm thick original ice film at 208 and 191 K, respectively, in what seems to be an inverse temperature dependence. There exist three different types of H2O molecules under the present experimental conditions, namely (a) free H2O corresponding to pure ice, (b) complexed H2O or c-ice, and (c) H2O molecules originating from the breakup of NAT or amorphous H2O/HNO3 mixtures. The significant decrease of J(ev)(H2O) with increasing chi(HNO3) leads to an increase of the evaporative lifetime of atmospheric ice particles in the presence of HNO3 and may help explain the occurrence of persistent and/or large contaminated ice particles at certain atmospheric conditions.