In-plume thermodynamics of the MALDI generation of fluorofullerene anions

J Phys Chem A. 2005 Feb 3;109(4):714-9. doi: 10.1021/jp046243l.

Abstract

The mechanism of formation of fluorofullerene (FF) negative ions derived from the compounds C(60)F(18), C(60)F(36), and C(60)F(48) was studied by matrix-assisted laser desorption/ionization (MALDI) time-of-flight (ToF) mass spectrometry (MS). A combined experimental/theoretical approach provides compelling evidence of nondissociative, thermodynamically controlled electron transfer from matrix-derived negative ions to the FF analyte as the main secondary-ionization process. Consistent with this thermochemical model, analyte parent molecular ion yield and degree of fragmentation for a particular MALDI experiment was found to depend on the nature of the matrix material (the five matrices investigated were sulfur, trans-2-[3-{4-tert-butylphenyl}-2-methyl-2-propenylidene]malononitrile, 9-nitroanthracene, 2,6-bis((furan-2-yl)methylene)cyclohexanone, and 2,6-bis((thiophen-2-yl)methylene)cyclohexanone). For mixtures of C(60)F(n) compounds with different n values and therefore different electron affinitites, unwanted electron-transfer reactions, which can lead to the suppression of C(60)F(n)(-) ions with low n values, were successfully blocked for the first time by judicious choice of the matrix. Therefore, reliable qualitative MS analysis of FF mixtures with wide ranges of composition is now possible.