SN2-like reaction in hydrogen-bonded complexes: a theoretical study

J Phys Chem A. 2005 Oct 20;109(41):9353-5. doi: 10.1021/jp054717q.

Abstract

S(N)2-like reactions in hydrogen-bonded complexes have been investigated in this paper at a correlated MP2(full)/6-311++G(3df,3pd) level, employing FH...NH(3)...HF and ClH...NH(3)...HCl as model systems. The unconventional F(Cl)-H...N noncovalent bond and the conventional F(Cl)-H...N hydrogen bond can coexist in one complex which is taken as the reactant of the S(N)2-like reaction. The S(N)2-like reaction occurs along with the inversion of NH(3) and the interconversion of the unconventional F(Cl)-H...N noncovalent bond and the conventional F(Cl)-H...N hydrogen bond. In comparison with that of the isolated NH(3), the inversion barriers of the two complexes both are significantly reduced. The effect of carbon nanotube confinement on the inversion barrier is also discussed.