Molecular basis of the recognition process: hydrogen-bonding patterns in the guanine primary recognition site of ribonuclease T1

J Phys Chem B. 2006 Jul 13;110(27):13590-6. doi: 10.1021/jp061360x.

Abstract

Investigation of the intrinsic H-bonding pattern of the guanine complex with a sizable segment (from Asn43 to Glu46) of the primary recognition site (PRS) in RNase T1 at the B3LYP/6-311G(d,p) level of theory enables the electronic density characteristics of the H-bonding patterns of the guanine-PRS complexes to be identified. The perfect H-bonding pattern in the guanine recognition site is achieved through the guanine complex interactions with the large segment of the PRS. Two significant short H-bonds, O epsilon 1...HN1 and O epsilon 2...HN2, have been identified. The similar short H-bond distances found in the anionic GC- base pair and in this study suggest that the short hydrogen-bond distances may be characteristic of the multiple H-bonded anionic nucleobases. The H-bonding energy distribution, the geometric analysis of the H-bonding pattern, and the electron structure characteristics of the H-bonds in the guanine PRS of RNase T1 all suggest that the O epsilon 1...HN1 and O epsilon 2...HN2 side-chain H-bonds dominate the binding at the guanine recognition site of RNase T1. Also, the geometry evidence, the electron structure characteristics, and the properties of the bond critical points of the H-bonds reveal that the side-chain H-bonding and the main-chain H-bonding are mutually intensifying. Thus the positive cooperativity between Asn43 to Tyr45 and Glu46 is proposed.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Binding Sites
  • Guanine / chemistry
  • Guanine / metabolism*
  • Hydrogen Bonding
  • Models, Molecular
  • Ribonuclease T1 / chemistry
  • Ribonuclease T1 / metabolism*

Substances

  • Guanine
  • Ribonuclease T1