Recombination R-triplex: H-bonds contribution to stability as revealed with minor base substitutions for adenine

Nucleic Acids Res. 2006 Jun 23;34(11):3239-45. doi: 10.1093/nar/gkl431. Print 2006.

Abstract

Several cellular processes involve alignment of three nucleic acids strands, in which the third strand (DNA or RNA) is identical and in a parallel orientation to one of the DNA duplex strands. Earlier, using 2-aminopurine as a fluorescent reporter base, we demonstrated that a self-folding oligonucleotide forms a recombination-like structure consistent with the R-triplex. Here, we extended this approach, placing the reporter 2-aminopurine either in the 5'- or 3'-strand. We obtained direct evidence that the 3'-strand forms a stable duplex with the complementary central strand, while the 5'-strand participates in non-Watson-Crick interactions. Substituting 2,6-diaminopurine or 7-deazaadenine for adenine, we tested and confirmed the proposed hydrogen bonding scheme of the A*(T.A) R-type triplet. The adenine substitutions expected to provide additional H-bonds led to triplex structures with increased stability, whereas the substitutions consistent with a decrease in the number of H-bonds destabilized the triplex. The triplex formation enthalpies and free energies exhibited linear dependences on the number of H-bonds predicted from the A*(T.A) triplet scheme. The enthalpy of the 10 nt long intramolecular triplex of -100 kJ x mol(-1) demonstrates that the R-triplex is relatively unstable and thus an ideal candidate for a transient intermediate in homologous recombination, t-loop formation at the mammalian telomere ends, and short RNA invasion into a duplex. On the other hand, the impact of a single H-bond, 18 kJ x mol(-1), is high compared with the overall triplex formation enthalpy. The observed energy advantage of a 'correct' base in the third strand opposite the Watson-Crick base pair may be a powerful mechanism for securing selectivity of recognition between the single strand and the duplex.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • 2-Aminopurine / analogs & derivatives
  • 2-Aminopurine / chemistry
  • Adenine / analogs & derivatives*
  • Adenine / chemistry
  • DNA / chemistry*
  • Hydrogen Bonding
  • Nucleic Acid Conformation
  • Recombination, Genetic
  • Thermodynamics
  • Tubercidin / chemistry

Substances

  • triplex DNA
  • 2-Aminopurine
  • 2,6-diaminopurine
  • DNA
  • Adenine
  • Tubercidin