Rheological properties of concentrated aqueous injectable calcium phosphate cement slurry

Biomaterials. 2006 Oct;27(29):5003-13. doi: 10.1016/j.biomaterials.2006.05.043. Epub 2006 Jun 19.

Abstract

In this paper, the steady and dynamic rheological properties of concentrated aqueous injectable calcium phosphate cement (CPC) slurry were investigated. The results indicate that the concentrated aqueous injectable CPC showed both plastic and thixotropic behavior. As the setting process progressed, the yield stress of CPC slurry was raised, the area of the thixotropic hysteresis loop was enlarged, indicating that the strength of the net structure of the slurry had increased. The results of dynamic rheological behavior indicate that the slurry presented the structure similar to viscoelastic body and the property of shear thinning at the beginning. During the setting process, the slurry was transformed from a flocculent structure to a net structure, and the strength increased. Different factors had diverse effects on the rheological properties of the CPC slurry in the setting process, a reflection of the flowing properties (or injection), and the microstructure development of this concentrated suspension. Raising the powder-to-liquid ratio decreased the distance among the particles, increased the initial strength, and shortened the setting time. In addition, raising the temperature improved the initial strength, increased the order of reaction, and shortened the setting time, which was favorable to the setting process. The particle size of the raw material had much to do with the strength of original structure and setting time. The storage module G' of CPC slurry during the setting process followed the rule of power law function G'=A exp(Bt), which could be applied to forecast the setting time, and the calculated results thereafter are in agreement with the experimental data.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biocompatible Materials*
  • Calcium Phosphates*
  • Rheology

Substances

  • Biocompatible Materials
  • Calcium Phosphates
  • calcium phosphate