Early post-hatching sex differences in cell proliferation and survival in the quail telencephalic ventricular zone and intermediate medial mesopallium

Brain Res Bull. 2006 Jun 30;70(2):107-16. doi: 10.1016/j.brainresbull.2006.04.005. Epub 2006 May 15.

Abstract

Previous studies indicated that avian telencephalic areas related to learned behavior, such as song perception and production, are sexually dimorphic. Our study focused on the eventual occurrence of dimorphism in the intermediate medial mesopallium, an area associated with learning in non-singing birds. During early post-hatching life (days 1 and 5) cell proliferation and survival of newborn cells were studied by means of 5-bromo-2-deoxy-uridine immunocytochemistry. Programmed cell death (apoptosis) was investigated at post-hatching day 10. The ventricular zone, intermediate medial part of mesopallium and lateral septal area was analyzed using stereological methods for cell counts. Short-term experiments revealed significantly higher numbers of newborn cells in male ventricular zone of mesopallium compared to female at post-hatching day 1. Long-term survival until post-hatching day 20 showed significantly higher numbers of labeled cells in the male compared to female intermediate medial part of mesopallium, which is the final destination of migrating cells born in the overlying ventricular zone. The vast majority of these early post-hatching newborn cells residing in the intermediate medial part of mesopallium expressed a neuronal phenotype. In addition to neurogenesis, higher numbers of apoptotic figures were found in the male intermediate medial part of mesopallium at post-hatching day 10, suggesting that cell death plays a role in the control of telencephalic regional cell density in males. Our findings indicate that sex-specific mechanisms possibly stimulate increased cell genesis and survival, as well as the counteracting event of increased apoptotic cell death that characterized the male intermediate medial part of mesopallium.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Animals, Newborn
  • Apoptosis / physiology
  • Cell Proliferation*
  • Cell Survival / physiology
  • Female
  • Male
  • Quail / physiology*
  • Sex Characteristics*
  • Telencephalon / cytology*
  • Telencephalon / physiology*