Chemical imaging of biological tissue with synchrotron infrared light

Biochim Biophys Acta. 2006 Jul;1758(7):846-57. doi: 10.1016/j.bbamem.2006.04.010. Epub 2006 Apr 21.

Abstract

Fourier transform infrared micro-spectroscopy (FTIRM) and imaging (FTIRI) have become valuable techniques for examining the chemical makeup of biological materials by probing their vibrational motions on a microscopic scale. Synchrotron infrared (S-IR) light is an ideal source for FTIRM and FTIRI due to the combination of its high brightness (i.e., flux density), also called brilliance, and broadband nature. Through a 10-microm pinhole, the brightness of a synchrotron source is 100-1000 times higher than a conventional thermal (globar) source. Accordingly, the improvement in spatial resolution and in spectral quality to the diffraction limit has led to a plethora of applications that is just being realized. In this review, we describe the development of synchrotron-based FTIRM, illustrate its advantages in many applications to biological systems, and propose some potential future directions for the technique.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Chemical Phenomena
  • Chemistry
  • Diagnostic Imaging / instrumentation*
  • Humans
  • Spectroscopy, Fourier Transform Infrared / instrumentation*
  • Synchrotrons*