Catabolic effects of gastric bypass in a diet-induced obese rat model

Curr Opin Clin Nutr Metab Care. 2006 Jul;9(4):423-35. doi: 10.1097/01.mco.0000232903.04910.7b.

Abstract

Purpose of review: In the USA, 8-10 million people are morbidly obese, which is associated with a high frequency of comorbidities. The most effective treatment is surgery. Of around 180,000 bariatric operations performed in 2005, 80% were Roux-en-Y gastric bypass, consisting of a small gastric pouch to minimize food intake and a Roux-en-Y of distal small bowel bypassing the upper gastrointestinal tract. The precise mechanisms whereby Roux-en-Y gastric bypass achieves sustained weight loss remain unknown. To gain insight into the catabolic events of sustained weight loss we developed a diet-induced obese Roux-en-Y gastric bypass rat model. We review our rat model data from the novel viewpoint of the catabolic state, comparing it with the limited human data available and the catabolic events occurring in cancer anorexia/cachexia syndrome.

Recent findings: Current data suggest the involvement of mechanisms other than restrictive and malabsorptive factors of the Roux-en-Y gastric bypass, classically thought of as the mechanisms responsible for weight loss. Based on available data, gastrointestinal hormones and cytokines play a key role in reducing food intake and regulating energy homeostasis. Because of the cross talk between peripheral modulators and the hypothalamus, a critical role for their interaction in the outcome of Roux-en-Y gastric bypass is emerging.

Summary: In our Roux-en-Y gastric bypass rat model many of the changes in gastrointestinal hormones, adipokines and cytokines as well as in hypothalamic neuropeptides and neurotransmitters resemble the changes observed in the anorexia/cachexia rat model, suggesting that Roux-en-Y gastric bypass triggers a catabolic state responsible for loss of appetite and prolonged body weight reduction.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Body Weight / physiology
  • Disease Models, Animal
  • Energy Intake / physiology*
  • Gastric Bypass*
  • Obesity, Morbid / metabolism*
  • Obesity, Morbid / surgery*
  • Organ Size
  • Peptide Hormones / metabolism
  • Rats
  • Weight Loss / physiology*

Substances

  • Peptide Hormones