Molecular dynamics of polystyrene solutions in microwave fields

J Chem Phys. 2006 May 28;124(20):204904. doi: 10.1063/1.2197496.

Abstract

Equilibrium and nonequilibrium molecular dynamics simulation techniques were used to assess the influence of an applied microwave field on the dynamics of methylamine-methanol and methylamine-dimethylformamide (DMF) solutions bound within atactic polystyrene over a range of polymer densities from 35 to 96 wt % polymer. Atomistically detailed systems were studied, ranging from 3000 to 10 644 particles, using previously established potential models. Structural and dynamical properties were determined in the canonical (NVT) ensemble at 298 K. The simulated DMF self-diffusion coefficients in polystyrene solutions were compared with the zero-field experimental results established with pulsed-gradient spin-echo NMR spectrometry. A simulated external microwave field, with a rms electric field intensity of 0.1 VA, was applied to these systems and the simulated dynamical results over field frequencies up to 10(4) GHz were compared with the zero-field values. Simulated evidence of athermal effects on the diffusive characteristics of these mixtures is reported.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chemistry, Physical / methods*
  • Computer Simulation
  • Diffusion
  • Dimethylformamide / chemistry
  • Electromagnetic Fields
  • Magnetic Resonance Spectroscopy / methods*
  • Methanol / chemistry
  • Methylamines / chemistry
  • Microwaves*
  • Models, Chemical
  • Molecular Conformation
  • Polymers / chemistry
  • Polystyrenes / chemistry*
  • Solvents
  • Temperature

Substances

  • Methylamines
  • Polymers
  • Polystyrenes
  • Solvents
  • Dimethylformamide
  • methylamine
  • Methanol