Acidity of mesoporous MoO(x)/ZrO2 and WO(x)/ZrO2 materials: a combined solid-state NMR and theoretical calculation study

J Phys Chem B. 2006 Jun 8;110(22):10662-71. doi: 10.1021/jp0614087.

Abstract

The acidity of mesoporous MoO(x)/ZrO2 and WO(x)/ZrO2 materials was studied in detail by multinuclear solid-state NMR techniques as well as DFT quantum chemical calculations. The 1H MAS NMR experiments clearly revealed the presence of two different types of strong Brønsted acid sites on both MoO(x)/ZrO2 and WO(x)/ZrO2 mesoporous materials, which were able to prontonate adsorbed pyrine-d5 (resulting in 1H NMR signals at chemical shifts in the range 16-19 ppm) as well as adsorbed trimethylphosphine (giving rise to 31P NMR signal at ca. 0 ppm). The 13C NMR of adsorbed 2-(13)C-acetone indicated that the average Brønsted acid strength of the two mesoporous materials was stronger than that of zeolite HZSM-5 but still weaker than that of 100% H2SO4, which was in good agreement with theoretical predictions. The quantum chemical calculations revealed the detailed structures of the two distinct types of Brønsted acid sites formed on the mesoporous MoO(x)/ZrO2 and WO(x)/ZrO2. The existence of both monomer and oligomer Mo (or W) species containing a Mo-OH-Zr (or W-OH-Zr) bridging OH group was confirmed with the former having an acid strength close to zeolite HZSM-5, with the latter having an acid strength similar to sulfated zirconia. On the basis of our NMR experimental and theoretical calculation results, a possible mechanism was proposed for the formation of acid sites on these mesoporous materials.