Quantitative detection and fixation of single and multiple gold nanoparticles on a microfluidic chip by thermal lens microscope

Anal Sci. 2006 May;22(5):781-4. doi: 10.2116/analsci.22.781.

Abstract

A detection and fixation method of single and multiple gold nanoparticles on the wall of a microfluidic channel is demonstrated. A thermal lens microscope (TLM) with continuous-wave excitation (wavelength, 532 nm) and probe (wavelength, 670 nm) laser beams was used to realize the sensitive detection of heat generated by light absorption of individual gold nanoparticles (50 nm in diameter); fixation of the individual nanoparticles was realized simultaneously. The fixation mechanism was investigated and attributed to an absorption-based optical force. In addition to single nanoparticle detection, multiple-nanoparticle detection and fixation was demonstrated. An acceleration of fixation was observed when the number of fixed particles was increased. TLM is expected to be a powerful tool for both the quantitative detection and precise fixation of individual nanoparticles.