Cellular and immunological basis of the host-parasite relationship during infection with Neospora caninum

Parasitology. 2006 Sep;133(Pt 3):261-78. doi: 10.1017/S0031182006000485. Epub 2006 Jun 6.

Abstract

Neospora caninum is an apicomplexan parasite that is closely related to Toxoplasma gondii, the causative agent of toxoplasmosis in humans and domestic animals. However, in contrast to T. gondii, N. caninum represents a major cause of abortion in cattle, pointing towards distinct differences in the biology of these two species. There are 3 distinct key features that represent potential targets for prevention of infection or intervention against disease caused by N. caninum. Firstly, tachyzoites are capable of infecting a large variety of host cells in vitro and in vivo. Secondly, the parasite exploits its ability to respond to alterations in living conditions by converting into another stage (tachyzoite-to-bradyzoite or vice versa). Thirdly, by analogy with T. gondii, this parasite has evolved mechanisms that modulate its host cells according to its own requirements, and these must, especially in the case of the bradyzoite stage, involve mechanisms that ensure long-term survival of not only the parasite but also of the host cell. In order to elucidate the molecular and cellular bases of these important features of N. caninum, cell culture-based approaches and laboratory animal models are being exploited. In this review, we will summarize the current achievements related to host cell and parasite cell biology, and will discuss potential applications for prevention of infection and/or disease by reviewing corresponding work performed in murine laboratory infection models and in cattle.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Cattle
  • Cattle Diseases / immunology*
  • Cattle Diseases / parasitology
  • Cattle Diseases / prevention & control
  • Cell Communication / immunology
  • Cell Communication / physiology
  • Cells, Cultured
  • Coccidiosis / immunology*
  • Coccidiosis / parasitology
  • Coccidiosis / prevention & control
  • Host-Parasite Interactions / immunology*
  • Life Cycle Stages / physiology
  • Mice
  • Neospora / immunology*
  • Neospora / physiology
  • Peptide Hydrolases / immunology
  • Peptide Hydrolases / physiology
  • Protozoan Proteins / immunology*
  • Protozoan Proteins / physiology
  • Protozoan Vaccines / immunology
  • Receptors, Cell Surface / immunology

Substances

  • Protozoan Proteins
  • Protozoan Vaccines
  • Receptors, Cell Surface
  • Peptide Hydrolases