Sugar concentrations along and across the Ricinus communis L. hypocotyl measured by single cell sampling analysis

Planta. 2006 Nov;224(6):1303-14. doi: 10.1007/s00425-006-0309-x.

Abstract

Single cell sap sampling and analysis were used to measure the longitudinal and radial distribution of sucrose, glucose and fructose in the apical cell division zone and in the basal, elongated zone of the Ricinus hypocotyl. Sucrose and hexose increased in concentration from the apex to the base of the seedling axis. In the cell division zone low hexose and sucrose concentrations prevailed in cortex and pith, with a slightly higher hexose concentration in pith cells. The sucrose concentrations in sieve tubes and in phloem were much higher than in the cortex and pith cells. In the basal zone of the hypocotyl high levels of sucrose in phloem, cortex and pith were found, therefore radial, diffusional sucrose flow away from the phloem was considered unlikely. It is proposed that radial flow of growth-water to the hypocotyl periphery together with the down-regulation of a sucrose transporter at the phloem leads to a preferential sucrose flow to the expanding cortex. The pith cells, which do not experience flow of growth-water, are probably insufficiently supplied with sucrose from the phloem resulting eventually in cell death as the plant grows. Shortage of sucrose supply, experimentally achieved by removal of the endosperm, led to sucrose hydrolysis in the pith. The sucrose levels in the other tissues decreased less. It appears that the hydrolysis to hexose was initiated to maintain the osmotic value in the pith cell sap. It is speculated that high hexose levels in the cells are indicative of insufficient sucrose supply via the phloem and that the pith cells are confronted with that situation during early seedling development.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbohydrate Metabolism*
  • Hypocotyl / metabolism*
  • Ricinus / cytology
  • Ricinus / growth & development
  • Ricinus / metabolism*