Induction of the heat shock response and translational thermotolerance in day 15 ovine trophectoderm

Theriogenology. 1997 Apr 1;47(5):1125-38. doi: 10.1016/s0093-691x(97)00069-1.

Abstract

The objectives of this study were to determine the ability of trophectoderm from preimplantation ovine embryos to synthesize hsp70 in response to heat shock and to identify conditions which induce translational thermotolerance in this tissue. Day 15 embryos were collected, and proteins synthesized in 1.5-mm sections of trophectoderm were radioactively labeled with (35)S-methionine. One-dimensional SDS-PAGE gels, two-dimensional gel electrophoresis and Western blots were utilized to characterize the heat shock response and to examine the induction of translational thermotolerance. Increased synthesis of the 70 kDa heat shock proteins and a protein with an approximate molecular weight of 15 to 20 kDa was observed with heat shock (> or = 42 degrees C). Total protein synthesis decreased (P < 0.05) with increased intensity of heat shock. At 45 degrees C, protein synthesis was suppressed with little or no synthesis of all proteins including hsp70. Recovery of protein synthesis following a severe heat shock (45 degrees C for 20 min) occurred faster (P < 0.05) in trophectoderm pretreated with a mild heat shock (42 degrees C for 30 min) than trophectoderm not pretreated with mild heat. In summary, trophoblastic tissue obtained from ovine embryos exhibit the characteristic "heatshock" response similar to that described for other mammalian systems. In addition, a sublethal heat shock induced the ability of the tissue to resume protein synthesis following severe heat stress. Since maintaining protein synthesis is crucial to embryonic survival, manipulation of the heat-shock response may provide a method to enhance embryonic survival.