Dose and energy dependence of response of Gafchromic XR-QA film for kilovoltage x-ray beams

Phys Med Biol. 2006 Jun 7;51(11):2871-81. doi: 10.1088/0031-9155/51/11/013. Epub 2006 May 24.

Abstract

There is a growing interest in Gafchromic films for patient dosimetry in radiotherapy and in radiology. A new model (XR-QA) with high sensitivity to low dose was tested in this study. The response of the film to different x-ray beam energies (range 28-145 kVp with various filtrations, dose range 0-100 mGy) and to visible light was investigated, together with the after exposure darkening properties. Exposed films were digitized with a commercially available, optical flatbed scanner. A single functional form for dose versus net pixel value variation has been determined for all the obtained calibration curves, with a unique fit parameter different for each of the used x-ray beams. The film response was dependent on beam energy, with higher colour variations for the beams in the range 80-140 kVp. Different sources of uncertainties in dose measurements, governed by the digitalization process, the film response uniformity and the calibration curve fit procedure, have been considered. The overall one-sigma dose measurement uncertainty depended on the beam energy and decreased with increasing absorbed dose. For doses above 10 mGy and beam energies in the range 80-140 kVp the total uncertainty was less than 5%, whereas for the 28 kVp beam the total uncertainty at 10 mGy was about 10%. The post-exposure colour variation was not negligible in the first 24 h after the exposure, with a consequent increase in the calculated dose of about 10%. Results of the analysis of the sensitivity to visible light indicated that a short exposure of this film to ambient and scanner light during the measurements will not have a significant impact on the radiation dosimetry.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Calibration
  • Dose-Response Relationship, Radiation
  • Film Dosimetry / instrumentation
  • Film Dosimetry / methods*
  • Humans
  • Radiation Dosage
  • Radiotherapy Dosage
  • Radiotherapy Planning, Computer-Assisted / instrumentation
  • Radiotherapy Planning, Computer-Assisted / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Time Factors
  • X-Ray Film*
  • X-Rays