Bose-Einstein condensation of incommensurate solid 4He

Phys Rev Lett. 2006 Apr 28;96(16):165301. doi: 10.1103/PhysRevLett.96.165301. Epub 2006 Apr 26.

Abstract

It is pointed out that the simulation computation of energy performed so far cannot be used to decide if the ground state of solid 4He has the number of lattice sites equal to the number of atoms (commensurate state) or if it is different (incommensurate state). The best variational wave function, a shadow wave function, gives an incommensurate state, but the equilibrium concentration of vacancies remains to be determined. We have computed the one-body density matrix in solid 4He for the incommensurate state by means of an exact ground state projector method in which incommensurability occurs spontaneously. We find a vacancy induced Bose-Einstein condensation of about 0.23 atoms per vacancy at a pressure of 54 bar. This means that bulk solid 4He is supersolid at low enough temperature if the exact ground state is incommensurate.