Synthetic chlorins bearing auxochromes at the 3- and 13-positions

J Org Chem. 2006 May 26;71(11):4092-102. doi: 10.1021/jo060208o.

Abstract

Synthetic chlorins bearing diverse auxochromes at the 3- and 13-positions of the macrocycle are valuable targets given their resemblance to chlorophylls a and b, which bear 3-vinyl and 13-keto groups. A de novo route has been exploited to construct nine zinc chlorins bearing substituents at the 3- and 13-positions and two benchmark zinc chlorins lacking such substituents. The chlorins are sterically uncongested and bear (1) a geminal dimethyl group in the reduced pyrroline ring, (2) a H, an acetyl, a triisopropylsilylethynyl (TIPS-ethynyl), or a vinyl at the 3-position, (3) a H, an acetyl, or TIPS-ethynyl at the 13-position, and (4) a H or a mesityl at the 10-position. The synthesis of the 13-substituted chlorins relied on p-TsOH x H2O-catalyzed condensation of an 8,9-dibromo-1-formyldipyrromethane (eastern half) and 2,3,4,5-tetrahydro-1,3,3-trimethyldipyrrin (western half), followed by metal-mediated oxidative cyclization, affording the 13-bromochlorin. Similar use of a bromo- or TIPS-ethynyl-substituted western half provided access to 3-substituted chlorins. A 3-bromo, 13-bromo, or 3,13-dibromochlorin was further transformed by Pd-coupling to introduce the vinyl group (via tributylvinyltin), TIPS-ethynyl group (via TIPS-acetylene), or acetyl group (via tributyl(1-ethoxyvinyl)tin, followed by acidic hydrolysis). In the 10-mesityl-substituted zinc chlorins, the series of substituents, 3-vinyl, 13-TIPS-ethynyl, 3-TIPS-ethynyl, 13-acetyl, 3,13-bis(TIPS-ethynyl), 3-TIPS-ethynyl-13-acetyl, or 3,13-diacetyl, progressively causes (1) a redshift in the absorption maximum of the B band (405-436 nm) and the Q(y) band (606-662 nm), (2) a relative increase in the intensity of the Q(y) band (I(B)/I(Q) = 4.2-1.5), and (3) an increase in the fluorescence quantum yield phi(f) (0.059-0.29). The zinc chlorins bearing a 3-TIPS-ethynyl-13-acetyl or a 3,13-diacetyl group exhibit a number of spectral properties resembling those of chlorophyll a or its zinc analogue. Taken together, this study provides access to finely tuned chlorins for spectroscopic studies and diverse applications.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Chlorophyll / chemistry*
  • Molecular Structure
  • Porphyrins / chemical synthesis*

Substances

  • Porphyrins
  • Chlorophyll
  • chlorin