Self-organization of low-symmetry adjacent-type metallophthalocyanines having branched alkyl chains

Langmuir. 2006 May 23;22(11):5051-6. doi: 10.1021/la060330i.

Abstract

Low-symmetry, adjacent-type metallophthalocyanines 1 and 2 with four branched alkyl chains on one side and a chiral bridging segment on the other were synthesized, and their self-organization properties were investigated. The synthesized adjacent-type phthalocyanines were liquid-crystalline and exhibited a phase transition from the crystalline phase to the mesophase below room temperature. X-ray diffraction indicated that the molecules are stacked in one-dimensional columnar aggregates with a hexagonal arrangement. The self-organization behavior of zinc complex 1 and cobalt complex 2 was also investigated with a monolayer experiment at the air-water interface. The adjacent-type phthalocyanines formed a stable monolayer at the air-water interface, and the monolayers could be transferred onto quartz substrates by a Y-type deposition. UV-vis, XRD, and CD measurements for the resulting Langmuir-Blodgett films indicated that 1 and 2 had different molecular orientations.