Storage of buffy coat-derived platelets in additive solutions: in vitro effects of storage at 4 degrees C

Transfusion. 2006 May;46(5):828-34. doi: 10.1111/j.1537-2995.2006.00803.x.

Abstract

Background: The aims of this in vitro study were to compare the storage of platelets (PLTs) at 4 degrees C with those stored at 22 degrees C and to determine the in vitro effects of preincubation at 37 degrees C for 1 hour before the analysis on the basis of the maintenance of PLT metabolic and cellular integrity.

Study design and methods: PLT concentrates (PCs) were prepared from pooled buffy coats (BCs) for paired studies (total eight pools from 160 BCs). Each pool was divided into four PCs and stored under different conditions: at 20 to 24 degrees C on a flatbed agitator, at 20 to 24 degrees C on a flatbed agitator and with incubation of the samples at 37 degrees C for 1 hour before the analysis, at 4 degrees C, and at 4 degrees C and with incubation of the samples at 37 degrees C for 1 hour before the analysis.

Results: Storage of PLTs at 4 degrees C resulted in reductions in the rate of glycolysis and better retention of pH after Day 10 than in PCs stored at 22 degrees C (Day 14, 7.003 +/- 0.047 vs. 7.201 +/- 0.146). Hypotonic shock response and extent of shape change were higher at 22 degrees C than at 4 degrees C and in preincubated PCs stored at 22 degrees C than in reference PCs stored at the same temperature (Day 5, 45.6 +/- 2.7 vs. 36.5 +/- 3.9 and 24.1 +/- 2.0 vs. 15.5 +/- 1.8). The concentration of RANTES was higher in PCs stored at 22 degrees C than at 4 degrees C (Day 7, 179 +/- 25 vs. 79 +/- 32).

Conclusion: PLTs stored at 4 degrees C without agitation maintain metabolic and cellular characteristics to a great extent during 21 days of storage. These studies confirm the view that PLTs lose their discoid shape and that this loss with storage at 4 degrees C is associated with reductions in metabolic rate and in their release of alpha-granule content.

Publication types

  • Comparative Study

MeSH terms

  • Blood Platelets* / cytology
  • Blood Platelets* / metabolism
  • Blood Preservation*
  • Cold Temperature
  • Cytoplasmic Granules / metabolism
  • Hot Temperature
  • Humans
  • Hypotonic Solutions
  • Platelet Transfusion

Substances

  • Hypotonic Solutions