Three-dimensional microorganization of the soil-root-microbe system

Microb Ecol. 2006 Jul;52(1):151-8. doi: 10.1007/s00248-006-9062-8. Epub 2006 May 6.

Abstract

Soils contain the greatest reservoir of biodiversity on Earth, and the functionality of the soil ecosystem sustains the rest of the terrestrial biosphere. This functionality results from complex interactions between biological and physical processes that are strongly modulated by the soil physical structure. Using a novel combination of biochemical and biophysical indicators and synchrotron microtomography, we have discovered that soil microbes and plant roots microengineer their habitats by changing the porosity and clustering properties (i.e., spatial correlation) of the soil pores. Our results indicate that biota act to significantly alter their habitat toward a more porous, ordered, and aggregated structure that has important consequences for functional properties, including transport processes. These observations support the hypothesis that the soil-plant-microbe complex is self-organized.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacterial Physiological Phenomena*
  • Ecosystem*
  • Fungi / physiology*
  • Hydrophobic and Hydrophilic Interactions
  • Image Processing, Computer-Assisted
  • Lolium / anatomy & histology
  • Lolium / growth & development
  • Plant Roots / physiology*
  • Porosity
  • Soil Microbiology*
  • Soil*

Substances

  • Soil