Proton reduction and dihydrogen oxidation on models of the [2Fe]H cluster of [Fe] hydrogenases. A density functional theory investigation

Inorg Chem. 2006 May 15;45(10):4109-18. doi: 10.1021/ic051986m.

Abstract

Density functional theory was used to compare reaction pathways for H2 formation and H+ reduction catalyzed by models of the binuclear cluster found in the active site of [Fe] hydrogenases. Terminal H+ binding to an Fe(I)-Fe(I) form, followed by monoelectron reduction and protonation of the di(thiomethyl)amine ligand, can conveniently lead to H2 formation and release, suggesting that this mechanism could be operative within the enzyme active site. However, a pathway that implies the initial formation of Fe(II)-Fe(II) mu-H species and release of H2 from an Fe(II)-Fe(I) form is characterized by only slightly less favored energy profiles. In both cases, H2 formation becomes less favored when taking into account the competition between CN and amine groups for H+ binding, an observation that can be relevant for the design of novel synthetic catalysts. H2 cleavage can take place on Fe(II)-Fe(II) redox species, in agreement with previous proposals [Fan, H.-J.; Hall, M. B. J. Am. Chem. Soc. 2001, 123, 3828] and, in complexes characterized by terminal CO groups, does not need the involvement of an external base. The step in H2 oxidation characterized by larger energy barriers corresponds to the second H+ extraction from the cluster, both considering Fe(II)-Fe(II) and Fe(II)-Fe(III) species. A comparison of the different reaction pathways reveals that H2 formation could involve only Fe(I)-Fe(I), Fe(II)-Fe(I), and Fe(II)-Fe(II) species, whereas Fe(III)-Fe(II) species might be relevant in H2 cleavage.