Evolutionary response to selection on clutch size in a long-term study of the mute swan

Am Nat. 2006 Mar;167(3):453-65. doi: 10.1086/499378. Epub 2006 Jan 9.

Abstract

Life-history traits in wild populations are often regarded as being subject to directional selection, and the existence of substantial variation and microevolutionary stasis of these characters is therefore a problem in need of explanation. Avian clutch size is an archetypal life-history trait in this context, and many studies have sought to test explanations for stasis in clutch size. Surprisingly, there are many fewer studies that used long-term data to ask how selection acts on clutch size, particularly in a multivariate framework. In this article, we report selection, inheritance, and evolution of clutch size over 25 years in a colony of mute swans using a multivariate quantitative genetic framework to control for correlations with breeding time. We show that clutch size is influenced by both additive genetic and permanent environmental effects and that selection acts on clutch size in combination with breeding time. Natural selection on clutch size is strongly directional, favoring larger clutches, and we observe an increase in clutch size of 0.35 standard deviations, consistent with the expected response based on selection and inheritance of clutch size. We hypothesize that these changes result from recent relaxation of food constraints and predation risks experienced by this colony.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anseriformes / genetics
  • Anseriformes / growth & development
  • Anseriformes / physiology*
  • Biological Evolution*
  • Clutch Size*
  • Female
  • Multivariate Analysis
  • Phenotype
  • Selection, Genetic*
  • Sexual Behavior, Animal