Control of Listeria spp. by competitive-exclusion bacteria in floor drains of a poultry processing plant

Appl Environ Microbiol. 2006 May;72(5):3314-20. doi: 10.1128/AEM.72.5.3314-3320.2006.

Abstract

In previous studies workers determined that two lactic acid bacterium isolates, Lactococcus lactis subsp. lactis C-1-92 and Enterococcus durans 152 (competitive-exclusion bacteria [CE]), which were originally obtained from biofilms in floor drains, are bactericidal to Listeria monocytogenes or inhibit the growth of L. monocytogenes both in vitro and in biofilms at 4 to 37 degrees C. We evaluated the efficacy of these isolates for reducing Listeria spp. contamination of floor drains of a plant in which fresh poultry is processed. Baseline assays revealed that the mean numbers of Listeria sp. cells in floor drains sampled on six different dates (at approximately biweekly intervals) were 7.5 log(10) CFU/100 cm(2) for drain 8, 4.9 log(10) CFU/100 cm(2) for drain 3, 4.4 log(10) CFU/100 cm(2) for drain 2, 4.1 log(10) CFU/100 cm(2) for drain 4, 3.7 log(10) CFU/100 cm(2) for drain 1, and 3.6 log(10) CFU/100 cm(2) for drain 6. The drains were then treated with 10(7) CE/ml in an enzyme-foam-based cleaning agent four times in 1 week and twice a week for the following 3 weeks. In samples collected 1 week after CE treatments were applied Listeria sp. cells were not detectable (samples were negative as determined by selective enrichment culture) for drains 4 and 6 (reductions of 4.1 and 3.6 log(10) CFU/100 cm(2), respectively), and the mean numbers of Listeria sp. cells were 3.7 log(10) CFU/100 cm(2) for drain 8 (a reduction of 3.8 log(10) CFU/100 cm(2)), <1.7 log(10) CFU/100 cm(2) for drain 1 (detectable only by selective enrichment culture; a reduction of 3.3 log(10) CFU/100 cm(2)), and 2.6 log(10) CFU/100 cm(2) for drain 3 (a reduction of 2.3 log(10) CFU/100 cm(2)). However, the aerobic plate counts for samples collected from floor drains before, during, and after CE treatment remained approximately the same. The results indicate that application of the two CE can greatly reduce the number of Listeria sp. cells in floor drains at 3 to 26 degrees C in a facility in which fresh poultry is processed.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Colony Count, Microbial
  • Decontamination / methods*
  • Drainage, Sanitary / methods
  • Enterococcus / growth & development*
  • Floors and Floorcoverings
  • Food Handling / methods
  • Food-Processing Industry*
  • Lactococcus lactis / growth & development*
  • Listeria / growth & development*
  • Poultry*