Synthesis and structure of ruthenium-silylene complexes: activation of Si-Cl bonds in N-heterocyclic silanes

J Am Chem Soc. 2006 May 10;128(18):6038-9. doi: 10.1021/ja0580744.

Abstract

Ru(0) complexes of bis(imino)pyridine ligands, [eta2-N3]Ru(eta6-Ar) and {[N3]Ru}2(mu-N2), where Ar = C6H6 or C6H5Me and [N3] = 2,6-(MesN=CMe)2C5H3N, react with N-heterocyclic silicon(IV) compounds to yield Ru(II) silylene complexes of the type [N3]Ru(X)(Cl){Si(NN)} (X = H, Cl, and Si(NN) = N,N'-bis(neopentyl)-1,2-phenylenedi(amino)silylene). The activation of two groups on the silane occurs in a stepwise fashion: initial oxidative addition of a Si-X bond, followed by 1,2-migration (alpha-elimination) of the Si-Cl group to the metal. Reversible dissociation from the Ru(II) center leads to free silylene, which can be preferentially trapped with Ru(0) complexes to generate a zero-valent silylene complex, [N3]Ru(N2){Si(NN)}, which also contains a terminal dinitrogen ligand.