Are phytochelatins involved in differential metal tolerance or do they merely reflect metal-imposed strain?

Plant Physiol. 1992 Aug;99(4):1475-80. doi: 10.1104/pp.99.4.1475.

Abstract

Plants from nontolerant and copper-tolerant populations of Silene vulgaris both produce phytochelatins upon exposure to copper. The threshold copper concentration for induction of phytochelatin and the copper concentration at which maximum phytochelatin contents occurs increase proportionally with the level of tolerance to copper. When exposed to their own highest no-effect concentration or 50%-effect concentration of copper for root growth, tolerant and nontolerant plants exhibit equal phytochelatin contents in the root apex, which is the primary copper target. This also holds for distinctly tolerant nonsegregating F(3) families, derived from a single cross of a nontolerant plant to a tolerant one. Therefore, the phytochelatin content of the root apex can be used as a quantitative tolerance-independent measure of the degree of toxicity experienced by the plant. Differential copper tolerance in S. vulgaris does not appear to rely on differential phytochelatin production.