Enhanced motility of KGF-transfected breast cancer cells

Anticancer Res. 2006 Mar-Apr;26(2A):961-6.

Abstract

Background: In a previous study, we reported that keratinocyte growth factor (KGF) produced a rapid increase in the motility of ER-positive breast cancer cells. Others have demonstrated that KGF treatment in rodent species produces rapid mammary ductal hyperplasia. Epithelial cells do not produce KGF; thus, in the present study, MCF-7 cells were stably transfected with a KGF-expressing vector and the motility and morphology of the transfected, non-transfected and empty vector cell lines compared.

Materials and methods: A mammalian expression vector containing a KGF cDNA was transfected into MCF-7/beta cells, and two stable clones (MCF-7/beta/KGF-T8 and MCF-7/beta/KGF-T9) were identified. Western blotting of conditioned medium from these clones was used to confirm the expression of KGF. The motility of wild-type and KGF-transfected MCF-7 cells was compared using time-lapse videomicroscopy and a cell culture wounding model which examined cell migration over a period of 1-3 days.

Results: The Western blots demonstrated that the expression of KGF in both the MCF-7/beta/KGF-T8 and MCF-7/beta/KGF-T9 cell lines was higher than the wild-type and MCF-7/beta cell lines. The cell proliferation and migration distance was significantly greater for both KGF-transfected MCF-7 cell lines than the wild-type and MCF-7/beta cell lines under the same experimental conditions. Further, changes in motile morphology were observed in both the MCF-7/beta/KGF-T8 and MCF-7/beta/KGF-T9 cell lines. In addition, the MCF-7/beta/KGF-T8 clone was found to produce much larger tumors than both the MCF-7/beta/KGF-T9 and EV clones in mouse xenografts. These results indicated that autocrine production of KGF in the KGF-transfected MCF-7 cell lines enhanced cell migration, migration-related morphology and xenograft tumor growth.

Conclusion: KGF-transfected MCF-7 cells displayed a much greater motility than non-transfected cells, confirming the KGF motility enhancement effect which we previously reported. The use of KGF-transfected breast cancer cells in the xenograft model may help to study the mechanism of KGF-mediated cell motility and to identify specific KGF antagonists that may be used to prevent or impede KGF-mediated metastatic progression.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Breast Neoplasms / genetics
  • Breast Neoplasms / metabolism
  • Breast Neoplasms / pathology*
  • Cell Line, Tumor
  • Cell Movement / physiology*
  • Fibroblast Growth Factor 7 / biosynthesis
  • Fibroblast Growth Factor 7 / genetics
  • Fibroblast Growth Factor 7 / metabolism
  • Fibroblast Growth Factor 7 / physiology*
  • Humans
  • Mice
  • Mice, Nude
  • Neoplasm Transplantation
  • Transfection
  • Transplantation, Heterologous

Substances

  • Fibroblast Growth Factor 7