Direct electrical detection of DNA synthesis

Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6466-70. doi: 10.1073/pnas.0601184103. Epub 2006 Apr 13.

Abstract

Rapid, sequence-specific DNA detection is essential for applications in medical diagnostics and genetic screening. Electrical biosensors that use immobilized nucleic acids are especially promising in these applications because of their potential for miniaturization and automation. Current DNA detection methods based on sequencing by synthesis rely on optical readouts; however, a direct electrical detection method for this technique is not available. We report here an approach for direct electrical detection of enzymatically catalyzed DNA synthesis by induced surface charge perturbation. We discovered that incorporation of a complementary deoxynucleotide (dNTP) into a self-primed single-stranded DNA attached to the surface of a gold electrode evokes an electrode surface charge perturbation. This event can be detected as a transient current by a voltage-clamp amplifier. Based on current understanding of polarizable interfaces, we propose that the electrode detects proton removal from the 3'-hydroxyl group of the DNA molecule during phosphodiester bond formation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Base Sequence
  • Biosensing Techniques / instrumentation
  • Biosensing Techniques / methods*
  • DNA / biosynthesis*
  • DNA / chemistry
  • Electrochemistry
  • Electrodes
  • Gold
  • Kinetics
  • Surface Properties

Substances

  • Gold
  • DNA