In-chain tunneling through charge-density-wave nanoconstrictions and break junctions

Phys Rev Lett. 2006 Mar 10;96(9):096402. doi: 10.1103/PhysRevLett.96.096402. Epub 2006 Mar 9.

Abstract

We have fabricated longitudinal nanoconstrictions in the charge-density wave conductor (CDW) NbSe3 using a focused ion beam and using a mechanically controlled break-junction technique. Conductance peaks are observed below the TP1=145 K and TP2=59 K CDW transitions, which correspond closely with previous values of the full CDW gaps 2Delta1 and 2Delta2 obtained from photoemission. These results can be explained by assuming CDW-CDW tunneling in the presence of an energy gap corrugation epsilon2 comparable to Delta2, which eliminates expected peaks at +/-|Delta1+Delta2|. The nanometer length scales our experiments imply indicate that an alternative explanation based on tunneling through back-to-back CDW-normal-conductor junctions is unlikely.