An optical-optical double resonance probe of the lowest triplet state of jet-cooled thiophosgene: rovibronic structures and electronic relaxation

J Chem Phys. 2006 Mar 28;124(12):124301. doi: 10.1063/1.2181983.

Abstract

The vibrational structure, rotational structure, and electronic relaxation of the "dark" T1 3A2(n,pi*) state of jet-cooled thiophosgene have been investigated by two-color S2<--T1<--S0 optical-optical double resonance (OODR) spectroscopy, which monitors the S2-->S0 fluorescence generated by S2<--T1 excitation. This method is capable of isolating the T1 vibrational structure into a1, b1, and b2 symmetry blocks. The fluorescence-detected vibrational structure of the Tz spin state of T1 shows that the CS stretching frequency as well as the barrier height for pyramidal deformation are significantly greater in the 3A2(n,pi*) state than in the corresponding 1A2(n,pi*) state. The differing vibrational parameters of the T1 thiophosgene relative to the S1 thiophosgene can be attributed to the motions of unpaired electrons that are better correlated when they are in the excited singlet state than when they are in the triplet state of same electron configuration. A set of T1 structural parameters and the information concerning the T1 spin states have been obtained from least-square fittings of the rotationally resolved T1<--S0 excitation spectrum. The nearly degenerate mid R:x and mid R:y spin states are well removed from mid R:z spin component, indicating that T1 thiophosgene is a good example of case (ab) coupling. The decay of the mid R:z spin state of T1 thiophosgene, obtained from time-resolved S2<--T1<--S0 OODR experiment, is characteristic of strong-coupling intermediate-case decay in which an initial rapid decay is followed by recurrences and/or a long-lived quasiexponential decay.