Fabrication of metal nanoparticle monolayers on amphiphilic poly(amido amine) dendrimer Langmuir films

Langmuir. 2006 Apr 11;22(8):3656-61. doi: 10.1021/la053202n.

Abstract

A newly designed 1.5th generation poly(amido amine) dendrimer with an azacrown core, hexylene spacers, and octyl terminals was spread on gold nanoparticle (Au-NP) suspension. The surface pressure-area isothermal curves indicated that the molecular area of dendrimer on Au-NP suspension was significantly smaller than that on water, indicating the formation of dendrimer/Au-NP composites. The dendrimer Langmuir films on the Au-NP suspension were transferred to copper grids at various surface pressures and observed by transmission electron microscopy. The transferred films consisted of a fractal-like network of nanoparticles at low surface pressure and of a defect-rich monolayer of nanoparticles at high surface pressure. From these results, it was suggested that the dendrimers bind Au-NPs, and dendrimer/Au-NP composites formed networks or monolayers at the interface. From the intensity decrease of the Au plasmon band of Au-NP suspension after the formation of composite, it was estimated that some (approximately 14) dendrimer molecules bind to one Au-NP. Furthermore, neutron reflectivity at the air/suspension interface and X-ray reflectivity of the film transferred on a silicon substrate revealed that the dendrimer molecules are localized on the upper-half surface of Au-NP. Metal affinity of azacrown, flexibility of hexylene spacer, and amphiphilicity of dendrimer with octyl terminals played important roles for the formation of dendrimer/Au-NP hybrid films. The present investigation proposed a new method to fabricate the self-assembled functional polymer/nanoparticle hybrid film.