Polarimetric characterization of liquid-crystal-on-silicon panels

Appl Opt. 2006 Mar 10;45(8):1688-703. doi: 10.1364/ao.45.001688.

Abstract

Mueller matrix imaging polarimetry of liquid-crystal-on-silicon (LCoS) panels provides detailed information useful for the diagnosis of LCoS problems and to understand the interaction of LCoS panels with other projector components. Data reduction methods are presented for the analysis of LCoS Mueller matrix images yielding contrast ratio, efficiency, spatial uniformity, and the calculation of optimum trim retarders. The effects of nonideal retardance, retardance orientation, and depolarization on LCoS system performance are described. The white-state and dark-state Mueller matrix images of an example LCoS panel are analyzed in terms of LCoS performance metrics typical for red-green-blue wavelengths of 470, 550, and 640 nm. Variations of retardance, retardance orientation, and depolarization are shown to have different effects on contrast ratio, efficiency, and brightness. Thus Mueller matrix images can diagnose LCoS problems in a way different from radiometric testing. The calculation of optimum trim retarders in the presence of spatial variations is discussed. The relationship of the LCoS retardance in single-pass (from front to back) to the double-pass retardance (from entrance to exit) is established and used to clarify coordinate system issues related to Mueller matrices for reflection devices.