Silylation of a Co/SiO2 catalyst. Characterization and exploitation of the CO hydrogenation reaction

Langmuir. 2006 Mar 28;22(7):3131-7. doi: 10.1021/la052980c.

Abstract

Several silylated- and nonsilylated Co/SiO2 catalysts have been prepared by reaction of the surface silanol groups with hexamethyldisilazane (HMDS). These samples have been characterized by means of N2 adsorption isotherms, solid-state nuclear magnetic resonance (29Si and 1H), X-ray photoelectron spectroscopy, thermogravimetric analysis, and diffuse reflectance IR spectroscopy. We have focused on the study of the silylated surface stability at high temperatures and in different atmospheres. The characterization techniques have shown that silica silylation after cobalt impregnation leads to a silylated SiO2 surface composed of hydrophobic Si-(CH3)3 species highly stable up to 600-650 K in both oxidizing and reducing atmospheres. However, X-ray diffraction and temperature-programmed reduction have shown that the hydrophobic nature of the silica surface does not affect the metal dispersion and its reducibility. The materials prepared in this way have been tested as catalysts for the Fischer-Tropsch synthesis reaction. The CO conversion reaction rate increased over the silylated catalyst, probably as a consequence of the higher number of available active sites because water adsorption over the catalyst surface is impeded. However, catalyst deactivation was not affected by the hydrophobic nature of the support, suggesting that carbon deposition is the more probable mechanism of cobalt-based catalyst deactivation during the Fischer-Tropsch synthesis.