TNF regulates cellular NAD+ metabolism in primary macrophages

Biochem Biophys Res Commun. 2006 Apr 21;342(4):1312-8. doi: 10.1016/j.bbrc.2006.02.109. Epub 2006 Feb 28.

Abstract

The inflammatory cytokine TNF is known to affect glucose and lipid metabolism, where its action leads to a cachexic state. Despite a well-established connection of TNF to metabolism, the relationship between TNF and NAD(+) metabolism remains unclear. In this report, we evaluated the effects of TNF on NAD(+) metabolism in cells that are TNF's primary autocrine target-macrophages. We designed real-time PCR primers to all NAD(+) metabolic enzymes, which we used to examine TNF-induced changes over time. We found that TNF paradoxically up-regulated enzymes that served to increase NAD(+) levels, such as IDO and PBEF, as well as enzymes that decrease NAD(+) levels, such as CD38 and CD157. The significance of these mRNA changes was evaluated by examining TNF-mediated changes in cellular NAD(+) levels. Treatment of macrophages with TNF decreased NAD(+) levels over time, suggesting that increases in NAD(+)-degrading enzymes were dominant. To evaluate whether this was the case, we measured TNF-mediated changes in NAD(+) levels in animals where CD38 was genetically deleted. In CD38-/- macrophages, the effects of TNF were reversed, with TNF increasing NAD(+) levels over time. The significance of our findings is threefold: (1) we establish that TNF affects NAD(+) metabolism by regulating the expression of major NAD(+) metabolic enzymes, (2) TNF-induced decreases in cellular NAD(+) levels were carried out through the up-regulation of extracellularly situated enzymes, and (3) we provide a mechanism for the observed clinical connection of TNF-dependent diseases to tissue reductions in NAD(+) content.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cells, Cultured
  • Macrophages / drug effects
  • Macrophages / metabolism*
  • Mice
  • Models, Biological*
  • Multienzyme Complexes / metabolism
  • NAD / metabolism*
  • Oxidation-Reduction / drug effects
  • Tumor Necrosis Factor-alpha / administration & dosage*

Substances

  • Multienzyme Complexes
  • Tumor Necrosis Factor-alpha
  • NAD