Cluster kinetics of pressure-induced glass formation

J Chem Phys. 2006 Feb 28;124(8):084502. doi: 10.1063/1.2170073.

Abstract

A prior correlation model for glass formation based on cluster-size distribution kinetics is here extended to account for pressure effects as well as temperature effects. The model describes how rapidly cooling or compressing a liquid or colloid leads to structural arrest and a consequent sharp rise in viscosity or dielectric relaxation time. In addition to activation energies, we include activation volumes in the rate coefficients for monomer-cluster addition and dissociation and cluster aggregation and breakage. The approach leads to scaled pressure correlations and plots for viscosity that reveal strong and fragile glass behavior, and agree with experimental data. A simple relationship among viscosity, attractive interparticle energy, and particle volume fraction displays how hard spheres with attractive forces can vitrify at small particle densities.