Structure and oxidation state of silica-supported manganese oxide catalysts and reactivity for acetone oxidation with ozone

J Phys Chem B. 2006 Mar 9;110(9):4207-16. doi: 10.1021/jp054288w.

Abstract

Silica-supported manganese oxide catalysts with loadings of 3, 10, 15, and 20 wt % (as MnO2) were characterized with use of X-ray absorption spectroscopy and X-ray diffraction (XRD). The edge positions in the X-ray absorption spectra indicated that the oxidation state for the manganese decreased with increasing metal oxide loading from a value close to that of Mn2O3 (+3) to a value close to that of Mn3O4 (+2(2)/3). The XRD was consistent with these results as the diffractograms for the supported catalysts of higher manganese oxide loading matched those of a Mn3O4 reference. The reactivity of the silica-supported manganese oxide catalysts in acetone oxidation with ozone as an oxidant was studied over the temperature range of 300 to 600 K. Both oxygen and ozone produced mainly CO2 as the product of oxidation, but in the case of ozone the reaction temperature and activation energy were significantly reduced. The effect of metal oxide loading was investigated, and the activity for acetone oxidation was greater for a 10 wt % MnOx/SiO2 catalyst sample compared to a 3 wt % MnOx/SiO2 sample.