Plant peroxisomes

Vitam Horm. 2005:72:111-54. doi: 10.1016/S0083-6729(05)72004-5.

Abstract

Peroxisomes, one of single membrane-bound organelles, are present ubiquitously in eukaryotic cells. They were originally identified as organelles for production of hydrogen peroxide, the degradation of its hydrogen peroxide, and metabolism of fatty acids, which are functions common to almost all the organisms. Meanwhile, photorespiration and assimilation of symbiotically induced nitrogen are plant-specific functions. Recent postgenetic approaches such as transcriptome and proteome showed that plant peroxisomes are differentiated in various tissues, and revealed that peroxisomes have more important roles in various metabolic processes including biosynthesis of plant hormones than we speculated. All peroxisomal proteins, including metabolic enzymes in the matrix, membrane proteins, and factors responsible for peroxisome biogenesis, are nuclear encoded, and are provided from the outside of peroxisomes. Peroxisome biogenesis, such as protein transport, division, and enlargement, requires various complicated steps and is one of the most intriguing topics. Analyses using peroxisome biogenesis mutants and the whole-scale sequencing projects among several organisms revealed the existence of essential factors responsible for peroxisome biogenesis such as peroxins. This review addresses a comprehensive issue relating to function and biogenesis of plant peroxisomes and Arabidopsis mutants that have been accelerating our understanding of peroxisomes in planta.

MeSH terms

  • Peroxisomes* / metabolism
  • Peroxisomes* / physiology
  • Plant Physiological Phenomena*
  • Plants* / metabolism