Lateral fluid percussion injury in the developing rat causes an acute, mild behavioral dysfunction in the absence of significant cell death

Brain Res. 2006 Mar 10;1077(1):24-36. doi: 10.1016/j.brainres.2006.01.011. Epub 2006 Feb 20.

Abstract

Lateral fluid percussion injury (LFP), a model of mild-moderate concussion, leads to the temporary loss of the capacity for experience-dependent plasticity in developing rats. To determine if this injury-induced loss in capacity for plasticity is due to cell death, we conducted stereological measurements within the cerebral cortex and CA3 of the hippocampus 2 weeks following mild, moderate or severe LFP in the post-natal day 19 (P19) rat. Results indicated that there was no significant change in the absolute number of neurons, regardless of injury severity, in either the ipsilateral cortex (sham = 10.6 +/- 1.7, mild = 11.5 +/- 2.1, moderate = 10.0 +/- 1.0, severe = 10.9 +/- 1.3 million neurons) or CA3 region of the hippocampus (sham = 251 +/- 38, mild = 289 +/- 2, moderate = 245 +/- 48, severe = 255 +/- 62 thousand neurons). Even though there was no evidence of a significant degree of injury-induced cell death, animals exhibited cognitive deficits as revealed in a Morris water maze task (MWM). The MWM results indicated that regardless of injury severity, P19-injured rats exhibited a significant increase in escape latency compared to age-matched shams (injury by day; P < 0.001) and a significant increase in the number of trials needed to reach criterion (P < 0.05). Analysis of a probe trial one week post-MWM training, however, indicated that there was no deficit in storage or recall of the learned behavior as analyzed by platform hits (sham = 2.9 +/- 0.37, mild = 2.0 +/- 0.40, moderate = 1 +/- 0, severe = 2.8 +/- 0.62) or percent time spent in, or immediately surrounding, the platform area (sham = 13.5 +/- 1.71, mild = 10.8 +/- 2.32, moderate = 12.7 +/- 0, severe = 13.5 +/- 1.69). Taken together, these results indicate that while LFP in P19-injured animals does not lead to significant cell death, it does generate acute, mild deficits in MWM performance.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Age Factors
  • Animals
  • Brain Concussion / pathology*
  • Brain Concussion / physiopathology
  • Cell Count
  • Cell Death / physiology
  • Cerebral Cortex / growth & development
  • Cerebral Cortex / injuries
  • Cerebral Cortex / pathology*
  • Cerebral Cortex / physiopathology
  • Disease Models, Animal
  • Hippocampus / growth & development
  • Hippocampus / injuries
  • Hippocampus / pathology*
  • Hippocampus / physiopathology
  • Male
  • Maze Learning / physiology*
  • Neurons / pathology*
  • Random Allocation
  • Rats
  • Rats, Sprague-Dawley
  • Severity of Illness Index
  • Statistics, Nonparametric