Pyrolytic characteristics of sewage sludge

Chemosphere. 2006 Aug;64(6):955-62. doi: 10.1016/j.chemosphere.2006.01.002. Epub 2006 Feb 17.

Abstract

In this study, a number of different sewage sludge including sludge samples from industrial and hospital wastewater treatment plants were characterized for pyrolysis behavior by means of thermogravimetric analysis up to 800 degrees C. According to the thermogravimetric results, five different types of mass loss behaviors were observed depending on the nature of the sludge used. Typical main decomposition steps occurred between 250 and 550 degrees C although some still decomposed at higher temperatures. The first group (Types I, II and III) was identified by main decomposition at approximately 300 degrees C and possible second reaction at higher temperature. Differences in the behavior may be due to different components in the sludge both quantitatively and qualitatively. The second group (Types IV and V), which rarely found, has unusual properties. DTG peaks were found at 293, 388 and 481 degrees C for Type IV and 255 and 397 degrees C for Type V. Kinetics of sludge decomposition can be described by either pseudo single or multicomponent overall models (PSOM or PMOM). The activation energy of the first reaction, corresponding to the main pyrolysis typically at 300 degrees C, was rather constant (between 68 and 77 kJ mol(-1)) while those of second and third reactions were varied in the range of 85-185 kJ mol(-1). The typical order of pyrolysis reaction was in the range of 1.1-2.1. The pyrolysis gases were composed of both saturated and unsaturated light hydrocarbons, carbon dioxide, ethanol and chloromethane. Most products, however, evolve at a quite similar temperature regardless of the sludge type.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Hot Temperature
  • Kinetics
  • Sewage / chemistry*

Substances

  • Sewage