Electron paramagnetic resonance of three-spin nitroxide-copper(II)-nitroxide clusters coupled by a strong exchange interaction

J Phys Chem A. 2006 Feb 23;110(7):2315-7. doi: 10.1021/jp0573792.

Abstract

The complex of Cu(2+) hexafluoroacetylacetonate with two pyrazol-substituted nitronyl nitroxides represents an unusual exchange-coupled three-spin system. The antiferromagnetic exchange coupling, which already atT < 150 K is larger than the thermal energy kT, induces the transition from a total spin state S = (3)/(2) to a state S = (1)/(2) and produces static spin polarization. Anomalous electron paramagnetic resonance (EPR) spectra of an S = (1)/(2) state were detected experimentally and described theoretically. The effective g factor of the three-spin system is smaller than 2, despite the fact that all the individual components have g > 2. The observed signals with g < 2 are highly informative and can be employed for determination of the sign and value of the exchange interaction in three-spin nitroxide-copper-nitroxide clusters.

Publication types

  • Letter