Is there a future for cyclo-oxygenase inhibitors in Alzheimer's disease?

CNS Drugs. 2006;20(2):85-98. doi: 10.2165/00023210-200620020-00001.

Abstract

Several epidemiological studies have indicated that the long-term use of NSAIDs, most of which are cyclo-oxygenase (COX) inhibitors, may reduce the risk of Alzheimer's disease. For this reason, anti-inflammatory COX-inhibiting NSAIDs have received increased attention in experimental and therapeutic trials for Alzheimer's disease. However, several recent efforts attempting to demonstrate a therapeutic effect of NSAIDs in Alzheimer's disease have largely failed. Clinicians and scientists currently believe that this lack of success may be attributable to two key problems: (i) clinical trials of NSAIDs have been conducted in patients with late-stage Alzheimer's disease, wherein advanced neurodegeneration may be refractory to anti-inflammatory drug treatment; and (ii) it is not known which of the large family of NSAIDs (i.e. COX-1, COX-2 or mixed inhibitors) is most efficacious in preventing Alzheimer's disease. The wide list of putative functions for COX in the brain, and the significant functional heterogeneity of NSAIDs, which appear to influence the beta-amyloid (Abeta) neuropathology associated with Alzheimer's disease via both COX-dependent and COX-independent pathways, complicate the interpretation of the mechanisms through which COX-inhibiting NSAIDs may beneficially influence Alzheimer's disease. As discussed in this review, for patients at high risk of developing Alzheimer's disease (e.g. those with mild cognitive impairment), preventative treatment with COX-inhibiting NSAIDs may ultimately represent a viable strategy in the management of clinical Alzheimer's disease. However, the recent evidence showing an increased risk of major cardiovascular events among patients treated with certain COX-1 and COX-2 inhibitors leaves many questions unanswered. We suggest that further investigation into the physiological role(s) of COXs in normal health and in disease conditions, and the identification of safer and better tolerated COX inhibitors, will provide renewed impetus to the application of anti-inflammatory strategies for the prevention and treatment of Alzheimer's disease.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Alzheimer Disease / drug therapy*
  • Animals
  • Anti-Inflammatory Agents, Non-Steroidal / therapeutic use*
  • Cell Cycle / drug effects
  • Cyclooxygenase Inhibitors / therapeutic use*
  • Gene Expression / physiology
  • Humans
  • Models, Biological

Substances

  • Anti-Inflammatory Agents, Non-Steroidal
  • Cyclooxygenase Inhibitors