Pentafluoronitrosulfane, SF5NO2

Inorg Chem. 2006 Feb 20;45(4):1783-8. doi: 10.1021/ic0516212.

Abstract

The synthesis of pentafluoronitrosulfane, SF5NO2, is accomplished either by reacting N(SF5)3 with NO2 or by the photolysis of a SF5Br/NO2 mixture using diazo lamps. The product is purified by treatment with CsF and repeated trap-to-trap condensation. The solid compound melts at -78 degrees C, and the extrapolated boiling point is 9 degrees C. SF5NO2 is characterized by 19F, 15N NMR, IR, Raman, and UV spectroscopy as well as by mass spectrometry. The molecular structure of SF5NO2 is determined by gas electron diffraction. The molecule possesses C2v symmetry with the NO2 group staggering the equatorial S-F bonds and an extremely long 1.903(7) Angstroms S-N bond. Calculated bond enthalpies depend strongly on the computational method: 159 (MP2/6-311G++(3df)) and 87 kJ mol(-1) (B3LYP/6-311++G(3df)). The experimental geometry and vibrational spectrum are reproduced reasonably well by quantum chemical calculations.