Monoclinic structured BiVO4 nanosheets: hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties

J Phys Chem B. 2006 Feb 16;110(6):2668-73. doi: 10.1021/jp056367d.

Abstract

Bismuth vanadate (BiVO(4)) nanosheets have been hydrothermally synthesized in the presence of sodium dodecyl benzene sulfonate (SDBS) as a morphology-directing template. The nanosheets were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) equipped with an X-ray energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), IR spectroscopy, transmission electron microscopy (TEM), and high-resolution TEM (HR-TEM). The BiVO(4) nanosheets had a monoclinic structure, were ca. 10-40 nm thick, and showed a preferred (010) surface orientation. The formation mechanism and the effects of reaction temperature and time on the products were investigated. UV-visible diffuse reflection spectra indicated that the BiVO(4) nanosheets had outstanding spectral selectivity and improved color properties compared with the corresponding bulk materials. Furthermore, the nanosheets showed good visible photocatalytic activities as determined by degradation of N,N,N',N'-tetraethylated rhodamine (RB) under solar irradiation.