Theory of electron solvation in polar liquids: a continuum model

J Chem Phys. 2006 Feb 7;124(5):054506. doi: 10.1063/1.2165198.

Abstract

The solvation of electrons in polar liquids is analyzed on the basis of an extended continuum model. In addition to the long-range electron-dipole interaction two short-range interactions are introduced. Among others one accounts for interactions with groups capable of forming hydrogen bonds and the second for quadrupolar characteristics of the liquid molecules. Both are induced by the orientation of the molecular dipole. Applying the scaling method a proper reaction coordinate is introduced and the solvation dynamics are discussed for the electron in the electronic ground state and after excitation to the p-type excited state. The observed spectral evolution of the transient absorption spectra, after two photon excitations for electrons in water and in methanol, is well described by this theory. An analytic estimate for the nonradiative deactivation from the electronically excited solvated electron is found to be consistent with an observed lifetime of 50 fs for the electron in water. The theory predicts an about three times slower internal conversion in methanol as solvent in comparison with water.