Multiwall carbon nanotubes made of monochirality graphite shells

J Am Chem Soc. 2006 Feb 1;128(4):1052-3. doi: 10.1021/ja057303j.

Abstract

A multiwall carbon nanotube (MWCNT) consists of several or many concentric carbon shells, each of which could be metallic or semiconducting. Both theoretical predictions and experimental results suggest that MWCNTs have exotic electronic structures and intriguing transport properties, which are highly dependent on chirality of each shell. However, the structural defects and the random distribution of chirality of each concentric graphitic shell make the MWCNTs difficult for basic research and technological applications. Thus far, it is still a challenge to get the high crystalline MWCNTs with limited atomic conformation. Here, we report the synthesis of high crystalline MWCNTs made of monochirality graphite shells by a low-temperature chemical vapor deposition (CVD) process in plasma environment. Structural analysis, carried out by transmission electron microscopy (TEM) image and electron diffraction methods, reveal that the MWCNTs are well-crystallized and that most of them have nearly identical chiralities.